Beam life time study for low energy run

M. Blaskiewicz, M. Bai, A. Fedotov, W. Fisher, M. Minty, G. Wang...

Plan

• Verify intensity dependant beam loss in yellow ring.

• Verify space charge effects via octopoles in blue ring.

Yellow beam life time study

Beam Decay v.s. Beam Intensity (WCM.bunched)

Beam Decay v.s. Vertical Emittance

Beam Decay v.s. Horizontal Emittance

Blue beam life time study

Beam intensity

Blue beam life time study

Beam Decay

Blue horizontal tune

Correlation of beam decay vs. Qx

Blue vertical tune

Correlation of beam decay vs. Qy

Summary

- Yellow beam loss was correlated with beam intensity for the analyzed 7 sets of 'good' data.
- For injection with low intensity (0.2E9/bunch), an initial fast beam decay lasted for ~1 minute.
- The effects of octopoles to blue beam life time is not conclusive as tune/chrom were also changed when adjusting octoples' strengthes. However, some of the observation might be explained by the compensation of space charge incoherent tune spread with octopoles.
- We did not observe coherent line from low frequency schottky spectrum and the space charge effects remains unclear.

Back up slides

Beam Decay v.s. Beam Intensity (DCCT)

Beam Decay v.s. Beam Intensity (WCM.bunched)

Beam Decay v.s. Horizontal Emittance

Beam Decay v.s. Vertical Emittance

Beam Decay v.s. Beam Intensity (WCM.bunched)

Beam Decay v.s. Beam Intensity (DCCT)

